UNBOUNDED NORMAL OPERATORS IN HILBERT SPACE

BY S. KANIEL(1)

Introduction

The theory of abstract unbounded operators and their extensions developed along two main lines. The first is the theory of extensions of symmetric operators (Achiezer and Glasman [3]). In this case the problem is to extend a symmetric operator to a self-adjoint one. This theory includes necessary and sufficient conditions for the existence of such extensions, as well as complete characterization of the nature of these extensions, especially the nature of the spectrum of various extensions pertaining to the same operator.

This theory imposes severe conditions and can be applied only in particular cases. In order to deal with abstract problems arising in the theory of partial differential equations and integral equations a relaxation is needed. The notions of "generalized solution," "weak solution," etc. (for example in Lax [1]) and the theory of distributions lead to the following problem of extension of general abstract operators. (For the sake of simplicity the illustration below will be confined to operators acting in Hilbert space.)

The operator (differential, integral, etc.) \mathscr{T} is embedded in a certain space E. In this space a "natural" domain \tilde{D}_0 is considered. Denote \mathscr{T} acting on \tilde{D}_0 by \tilde{T}_0 . \tilde{T}_0 is in general bounded below on \tilde{D}_0 so it may be closed to an operator $T_0 \supset \tilde{T}_0$ acting on $D_0 \supset \tilde{D}_0$. By this process the "generalized solutions" are obtained.

In most cases the range of T_0 is not the whole space so an extension is needed. Among all possible extensions only the "weak solutions" are considered. They are obtained by looking at a natural "formal adjoint" \mathcal{F}^* defined on the closure of the set \widetilde{D}_0 . Denote this operator by T_1^* and denote $(T_1^*)^*$ by T_1 . Any function in the domain of T_1 is called a "weak solution." In general the range of T_1 is the whole space but there are "too many" weak solutions because there are null solutions. So the problem is to find an intermediate $T_0 \subset T \subset T_1$ having a bounded inverse defined on the whole space. Somewhat different versions are in G. C. Rota [4] and Gohberg and Krein [5]. These general theories have only weak results, because of the generality of the operators considered.

Received by the editors September 14, 1962.

⁽¹⁾ This work is a part of a Ph.D. Thesis written under the instruction of Professor S. Agmon, It was also sponsored in part by the National Science Foundation Grant NSF I-19135.

In this work the author attempts to find "intermediates" between symmetric and general operators; these are the unbounded normal operators.

Unbounded normal operators are defined in Chapter 2. In addition to the commutative relations there are conditions imposed on the domains of a normal operator and its adjoint. Most of this chapter is devoted to theorems dealing with properties of such operators. In Chapter 3 the extensions of normal operators are considered. An important particular case is the complete normal extensions. These have an inverse which is a *bounded* normal operator. In this case there are theorems investigating the local behaviour of the spectrum, the asymptotic distribution of the eigenvalues, etc. Some theorems on general unbounded operators are obtained in the first chapter.

CHAPTER 1. GENERAL UNBOUNDED OPERATORS

This chapter which is of introductory type will deal with properties of general (closed) unbounded operators and their extensions. Some of the theorems cited in this chapter are known and will be given without proof except cases where adding the proof is desirable for fluent reading of the subsequent paragraphs.

Throughout this paper: Capital letters S, T, etc., will be used to denote operators. The domain of an operator T will be denoted by D_T , its range by Δ_T . Sequences will be denoted by $\{f_n\}, \{g_i\}$, etc. Other notations are standard in some basic books (and are not standard in the others).

DEFINITION 1.1. An operator S will be called an extension of an operator T if:

- (a) $D_S \supset D_T$,
- (b) if $f \in D_T$ then Sf = Tf.

Denote it briefly by $S \supset T$ (S contains T).

DEFINITION 1.2. A point λ will be called a regular point of T (or T is regular in the point λ) if there exists a constant C such that:

$$||Tf - \lambda f|| \ge C ||f|| \text{ for } f \in D_T.$$

The complement of the regular points will be called the *spectrum* of T. T is regular means: T is regular in zero.

A known theorem is the following: For any closed operator the set of its regular points is open (this theorem will be proved implicitly by Theorem 1.2).

DEFINITION 1.3. T regular in λ . The deficiency index of $T - \lambda I$ will be the dimension of the orthogonal complement of $\Delta_{T-\lambda I}$. (The deficiency index may be finite or infinite.)

A known theorem asserts that the deficiency index of $T - \lambda I$ is constant (with respect to λ) in any connected component of the set of the regular points of T. (This theorem too will be proved by Theorem 1.2.)

A general operator T may be extended in a variety of ways, but the interesting extensions are obtained as the restriction of an adjoint operator in the following way:

DEFINITION 1.4. $T_1^* \subset T^*$. \tilde{T} will be called an extension of T with respect to T_1^* if:

- (a) $\tilde{T} \supset T$,
- (b) $\tilde{T} \subset (T_1^*)^*$.

DEFINITION 1.5. \tilde{T} is a regular extension of T if \tilde{T} is regular. \tilde{T} is a complete regular extension if $\Delta_{\tilde{T}} = H$ (the entire space).

DEFINITION 1.6. T is regular in λ . The greatest constant C satisfying: $||Tf - \lambda f|| \ge C ||f||$ for $f \in D_T$ will be called the greatest lower bound of T_{λ} .

LEMMA 1.1. T is a regular operator and is bounded below by C. Conclusions:

- (a) $\Delta_{T^*} = H$.
- (b) There exists a unique right inverse S to T^* $(T^*S = I)$ bounded from above by 1/C and mapping H into Δ_T .

Proof. The theorem as well as the proof can be found in the literature (perhaps in a somewhat different setting). The proof will be given for the sake of completeness.

It is clear that (a) follows from (b). In order to prove (b) define a functional l_h acting on functions in Δ_T in the following way: If $\phi = Tg$ then $l_h(\phi) = (g, h)$ where h is an arbitrary fixed element. This functional is bounded because:

$$(1.1) \frac{l_h(\phi)}{\|\phi\|} = \frac{(g,h)}{\|\phi\|} \le \frac{\|g\| \cdot \|h\|}{\|\phi\|} = \frac{\|g\| \cdot \|h\|}{\|Tg\|} \le \frac{1}{C} \|h\|.$$

Therefore $l_h(\phi)$ can be represented by a function $f, f \in \Delta_T$, satisfying:

(1.2)
$$l_h(\phi) = (\phi, f) = (Tg, f) = (g, h).$$

Hence by the definition of $T^*: h = T^*f$ and by (1.1) $||h|| \ge C ||f||$. It is clear that the mapping $h \to f$ is linear; denote this operator by S. So by (1.2) (Tg, Sh) = (g, h) or $T^*S = I$. It is evident that S satisfies (b). The uniqueness follows from the unique definition of f.

With the aid of this lemma the existence of extensions of a regular operator T with respect to a regular $T_1^* \subset T^*$ can be proved and estimates of the greatest lower bound can be obtained in the following way:

THEOREM 1.1. T and $T_1^*(T_1^* \subset T^*)$ are regular operators; c, c* are their greatest lower bounds respectively.

Conclusion: There exists a complete regular extension of T with respect to T_1^* , denote it by \tilde{T} having $\tilde{c} = \min\{c, c^*\}$ as its greatest lower bound.

Proof. The idea is to generalize Krein's method of extension of symmetric operators. By the conditions of this theorem Δ_T is a closed subspace and the mapping $R: Tf \to f$ defines a bounded operator from Δ_T into H with 1/c as a bound. Obviously TR = I (on Δ_T). Extend R boundedly to an operator \tilde{R} in such a way that $(T_1^*)^*\tilde{R} = I$ (on H). By this equality \tilde{R} has a left inverse; denote it by \tilde{T} which

satisfies $T \subset \tilde{T} \subset (T_1^*)^*$. Moreover the lower bound of \tilde{T} is the upper bound of \tilde{R} and $\Delta_{\tilde{T}} = H$.

The extension will be carried by two steps. The first step will be the extension of PR where P denotes the projection operator from H to $\Delta_{T_1^*}$. The second step will be the extension of (I-P)R. Consider Lemma 1.1 for the operator T_1^* . There exists an operator S such that $(T_1^*)^*S = I$ mapping H into $\Delta_{T_1^*}$. On the other hand $(T_1^*)^*PR = I$, because for any $f \in D_R$ ($f \in \Delta_T$) and $g \in D_{T_1^*}$:

$$((T_1^*)^*PRf, g) = (PRf, T_1^*g) = (Rf, T_1^*g) = (TRf, g) = (f, g).$$

Hence by the uniqueness of S it follows that $S \supset PR$. Denote now S by $(PR)^{\sim}$ the desired extension of PR.

Extend now (I - P)R to $(I - P)R^{\sim}$ in such a way that $\Delta_{(I - P)R}^{\sim}$ will be orthogonal to $\Delta_{T^{\bullet}}$ and the extended operator will satisfy:

$$(1.3) \quad \|\tilde{R}g\|^2 = \|(PR)^{\sim}g\|^2 + \|(I-P)R^{\sim}g\|^2 \le \left[\max\left\{\frac{1}{c}, \frac{1}{c^*}\right\}\right]^2 \|g\|^2.$$

Define the bilinear symmetric form:

(1.4)
$$[f,g] = \left[\max \left\{ \frac{1}{c}, \frac{1}{c^*} \right\} \right]^2 (f,g) - ((PR)f^*, (PR)^*g).$$

By Lemma 1.1, $||f||^2 \cdot (1/c^*)^2 \ge ((PR)^* f, (PR)^* f)$; hence $[f,f] \ge 0$. Define $[[f]] = [f,f]^{1/2}$ and observe that (1.3) may be written as:

(1.5)
$$||(I-P)R^{\sim}f|| \leq [[f]].$$

As []] is a semi-norm and $(PR)^{\sim}$ is a continuous operator, it follows that the linear manifold of all g satisfying [[g]] = 0 is a closed subspace K. Therefore the quotient space H/K can be defined, by assigning [] as its norm and [] as its scalar product. Complete this space to a Hilbert space \hat{H} .

The inequality $\|(I-P)Rf\| \le [[f]]$ is valid because $\|PRf\|^2 + \|(I-P)Rf\|^2 = \|Rf\|^2 \le (1/c^2) \|f\|^2$. Therefore by the mapping $H \to \hat{H}$ the operator (I-P)R is mapped into a continuous operator defined on the image of Δ_T and having its range in the image of the orthogonal complement of $\Delta_{T_1^*}$. Extend now this operator to \hat{H} keeping its norm fixed and keeping its range in the image of $\Delta_{T_1^*}$. This extension induces extension of the original operator (I-P)R to $(I-\tilde{P})R$ which satisfies (1.5). Hence $\tilde{R} = (PR)^{\sim} + (I-\tilde{P})R$ satisfies (1.3), the desired inequality.

For applications in the next chapters it is important to know the dependence of $\Delta_{T-\lambda I}$ on λ . In certain cases it is more convenient to investigate the dependence of the orthogonal complement to the range.

The following theorem describes the nature of dependence in case that T has a finite deficiency index.

THEOREM 1.2. T is regular in $\bar{\lambda}_0$ and has a finite deficiency index n. f_1, \dots, f_n are n orthonormal functions which span $\left[\Delta_{T-\bar{\lambda}_0 I}\right]^+$ (the orthogonal complement).

In this case there exist analytic functions in a neighborhood of λ_0 (from the complex plane to the space) $f_1(\lambda), f_2(\lambda), \dots, f_n(\lambda)$ which span $[\Delta_{T-\bar{\lambda}I}]^+$ and $f_i(\lambda_0) = f_i$, $i = 1, 2, \dots, n$.

Proof. Without loss of generality it is sufficient to consider the case where $\lambda_0 = 0$. Denote T^{-1} by R' (defined only on Δ_T) and extend R' boundedly to an operator R defined in the entire space. Consider its adjoint R^* and the expression:

(1.6)
$$f_i(\lambda) = f_i + \lambda R^* f_i + \lambda^2 R^{*2} f_i + \dots + \lambda^j R^{*j} f_i + \dots;$$

this is a power series of λ which converge in the neighborhood of 0 and the radius of convergence is at least $1/\|R^*\|$.

For any $h \in D_{T*}$

$$(f_{i}(\lambda), Th - \bar{\lambda}h) = (f_{i}(\lambda), Th) - \lambda(f_{i}(\lambda), h)$$

$$= \sum_{j=0}^{\infty} (\lambda^{j} R^{*j} f_{i}, Th) - \lambda \sum_{j=0}^{\infty} (\lambda^{j} R^{*j} f_{i}, h)$$

$$= (f_{i}, Th) + \lambda \sum_{j=1}^{\infty} (\lambda^{j-1} R^{*j-1} f_{i}, RTh) - \lambda \sum_{j=0}^{\infty} (\lambda^{j} R^{*j} f_{i}, h)$$

$$= (f_{i}, Th) = 0.$$

This equality means that the analytic functions defined by (1.6) are orthogonal to $\Delta_{T-\bar{\lambda}I}$.

Moreover, in a small neighborhood of 0 these functions are independent for any λ . Assume that for some λ_0 $f_i(\lambda_0)$ are dependent. It means that there exist constants α_i such that $\sum_{i=1}^n \alpha_i f_i(\lambda_0) = 0$; and α_i may be normalized so that $\alpha_1 = 1$, $|\alpha_i| \leq 1$.

Take scalar product with f_1 :

$$(1.7) 0 = \sum_{i=1}^{n} (\alpha_i f_i(\lambda_0), f_1) = 1 + \sum_{i=2}^{\infty} \alpha_i (f_i, f_0) + \sum_{j=1}^{\infty} \lambda_0^j \sum_{i=1}^{n} \alpha_i (R^* f_i, f_1).$$

The f_i form an orthonormal system; therefore the second summand is zero and for $|\lambda_0| < 1/||R^*|| \cdot 3n$

$$\left|\sum_{j=1}^{\infty} \lambda_0^j \sum_{i=1}^n \alpha_i (R^*^j f_i, f_1)\right| \leq \sum_{j=1}^{\infty} \left(\frac{1}{\|R^*\| \cdot 3n}\right)^j \cdot n \|R^*\|^j \leq \frac{2}{3},$$

so the right-hand side of (1.7) is greater than 1/3.

Because the deficiency index is constant in the neighborhood of 0 the $f_i(\lambda)$ span $(\Delta_{T-\bar{\lambda}I})^+$.

REMARKS. (a) The constancy of the deficiency index is implicitly proved. As a consequence of the independence of $f_i(\lambda)$ it follows that the deficiency index in a neighborhood of 0 is greater than or equal to that in 0, and the equality is obtained by "going back" and expanding about a point close to 0.

(b) This theorem is true also in case of infinite deficiency index by application of Paley-Wiener theorem on biorthogonal system. As this case is not required in the sequel the proof is omitted.

CHAPTER 2. NORMAL OPERATORS

As was mentioned in the introduction, an "intermediate class" between general closed operators and symmetric operators will be introduced. In Chapter 1 the idea of restriction of the adjoint was employed as, for example, in Lemma 1.1. In this chapter a somewhat more complicated structure will be defined in the following way.

Consider an operator T_0 defined on a dense manifold; consider its adjoint T_0^* and a restriction $T_1^* \subset T_0^*$ and form the adjoint operator $(T_1^*)^*$. (T_1^*) has to be defined on a dense manifold.) Denote $(T_1^*)^*$ by $T_1: T_1 \supset T_0$.

Using these notations the spaces H_{λ} and H_{λ}^* will be introduced. H_{λ} is defined as the subspace of all f satisfying $T_1 f = \lambda f$; this is the orthogonal complement to $\Delta_{T_1^* - \bar{\lambda}I}$. Similarly, H_{λ}^* is the subspace of all g satisfying $T_0^* g = \lambda g$, and consequently H_{λ}^* is orthogonal to $\Delta_{T_0 - \bar{\lambda}I}$.

In order to define the normal operators additional conditions are required.

DEFINITION 2.1. (T_0, T_1^*) form a normal pair if:

- (a) T_0 commutes with T_1^* , i.e., if $T_0 f = g$, $T_1^* g = h$ then $f \in D_{T_1^*}$; $T_1^* f \in D_{T_0}$ and $T_0 T_1^* f = T_1^* T_0 f$.
- (b) The closure of $D_{T_1^*T_0}$ with respect to T_0 norm is D_{T_0} ; i.e. for any $g \in D_{T_0}$ there exists a sequence $\{g_i\} \in D_{T_1^*T_0}$ such that $g_i \to g$ and $T_0g_i \to T_0g$. The same property holds for T_1^* as well.
 - (c) $D_{T_0^*} \cap H_{\lambda}$ is dense in H_{λ} and $D_{T_1} \cap H_{\lambda}^*$ is dense in H_{λ}^* .

 T_0 is normal if T_0 has a mate T_1^* such that (T_0, T_1^*) form a normal pair.

This definition is quite restrictive. It seems that condition (a) alone will not furnish strong results in the case of unbounded operators. However, the author is not convinced that conditions (b) and (c) are the best. They were chosen because many "natural" operators like partial differential operators with constant coefficients satisfy these conditions.

In detail: Take a differential operator with constant coefficients \mathcal{F} and denote its formal adjoint by \mathcal{F}^* . T_0 will be defined by restricting \mathcal{F} to the closure of D (the set of functions with compact support). T_1^* will be \mathcal{F}^* restricted to the closure with respect to \mathcal{F}^* of D.

Property (b) is valid because D is in the domain of $T_0T_1^*$. Property (c) is valid because the exponentials are in the domain of T_0^* and T_1 and by a known theorem of Malgrange exponentials are dense in H_{λ} and in H_{λ}^* . Observe also that any symmetric operator satisfies (b) and (c) automatically.

In this work most of the results will be obtained for operators having a finite deficiency index. Even in this case the results call for further investigation.

LEMMA 2.1. T_0^* is invariant in H_1 and T_1^* is invariant in H_1^* .

Proof. If $g \in D_{T_0^*}$ and $f \in D_{T_0T_0^*}$ then:

$$(T_0^*g, T_1^*f) = (g, T_0^*f) = (g, T_1^*T_0f) = (T_1g, T_0f)$$
$$= (\lambda g, T_0f) = (\lambda T_0^*g, f).$$

But by property (b) the equality $(T_0^*g, T_1^*f) = (\lambda T_0^*g, f)$ is valid for any $f \in D_{T_1^*}$ which means that $T_0^*g \in H_{\lambda}$. The same proof holds for the second part.

THEOREM 2.1. (T_0, T_1^*) form a normal pair. T_1^* is regular in a region \bar{D} and has a finite deficiency index n.

Subject to those conditions there exists an analytic function of two variables $G(Z,\omega)$:

$$G(Z,\omega)=\omega^n+h_1(Z)\omega^{n-1}+\cdots+h_n(Z),\ Z\in D,$$

having the property: For any Z_0 the zeros of $G(Z_0,\omega)$ are the eigenvalues of T_0^* restricted to H_{Z_0} .

Proof. In the case where T_1^* has a finite deficiency index, property (c) of Definition 2.1 may be restated simply as $H_{\lambda} \in D_{T_2^*}$.

Choose an arbitrary point $\hat{\lambda} \in D$. Denote by f_1, \dots, f_n an orthonormal system in H_{λ} . T_1^* satisfies the conditions of Theorem 1.2; therefore there exist analytic functions $f_i(\lambda)$ which span H_{λ} satisfying $f_i(\hat{\lambda}) = f_i$. (Observe that H_{λ} is the orthogonal complement of $\Delta_{T_1^* - \lambda I}$.) By normality hypothesis T_0^* is invariant in H_{λ} , therefore

$$T_0^*f_i(\lambda) = \sum_{i=1}^n \alpha_{ij}(\lambda)f_j(\lambda),$$

 $\alpha_{ij}(\lambda)$ are numerical functions of λ , moreover they are analytic. The proof is the following: for any $g \in D_{T_0}$: $(T_0^*f_i(\lambda), g) = (f_i(\lambda), T_0g)$; therefore

(2.1)
$$\sum_{j=1}^{n} (\alpha_{ij}(\lambda)f_j(\lambda), g) = \sum_{j=1}^{n} \alpha_{ij}(\lambda) \cdot (f_j(\lambda), g) = (f_i(\lambda), T_0g).$$

 D_{T_0} is dense in the space; therefore $g_1, g_2, \dots, g_n \in D_{T_0}$ may be chosen satisfying the following property: The $n \times n$ matrix $(f_j(\lambda), g_k)$ is regular in a neighborhood of $\hat{\lambda}$. So $\alpha_{ij}(\lambda)$ solve the system of n linear equations:

(2.2)
$$\sum_{j=1}^{n} \alpha_{ij}(\lambda) \cdot (f_j(\lambda), g_k) = (f_i(\lambda), T_0 g_k), \qquad k = 1, 2, \dots, n.$$

Because the right-hand side as well as the coefficients are analytic functions of λ , the solutions must be analytic.

The eigenvalues of T_0^* restricted to H_{λ} are the zeros of the characteristic polynomial of the matrix $(\alpha_{ij}(\lambda))$. Its coefficients are polynomials in the matrix's

entries; therefore they are analytic functions. So the characteristic polynomial is of the form $\omega^n + h_1(Z)\omega^{n-1} + \cdots + h_n(Z)$ where $h_i(Z)$ are analytic in a neighborhood of $\hat{\lambda}$. This is the desired $G(\omega, Z)$.

In order to complete the proof it is necessary to show that $h_i(Z)$ are analytic in D. As coefficients of the characteristic polynomial they are not dependent on the special point $\hat{\lambda}$ nor on the special choice of $f_i(\lambda)$. So there is a unique continuation to the entire domain.

An important special case is when T_0 and T_1^* are regular in the entire plane. Differential operators acting on the closure of functions with compact support serve again as an example. The Hörmander inequality [2] states that for any operator $\mathcal F$ and any $f \in D$: $\|\mathcal Ff\| \ge C \|f\|$ and C is dependent only on the domain and on the order of the operator. Therefore $\|\mathcal Ff - \lambda f\| \ge C \|f\|$ for any λ , or by the definition of T_0 and $T_1^* \|T_0f - \lambda f\| \ge C \|f\|$ and $\|T_1^*f - \lambda f\| \ge C \|f\|$ (the same C).

By adding the conditions of finiteness of the deficiency indices the following theorem is obtained.

THEOREM 2.2. T_0 , T_1^* form a normal pair, are regular in the entire plane and have finite deficiency indices.

Subject to these conditions there exists a polynomial in two variables $P(Z,\omega)$ having the property: If $P(Z_0,\omega_0)=0$ then there exists an eigenfunction f satisfying $T_1f=Z_0f$, $T_0^*f=\omega_0f$, and if f is a common eigenfunction with eigenvalues Z_0,ω_0 , then $P(Z_0,\omega_0)=0$.

An illustration to the general case will be the proof in the special case where T_0 and T_1^* have deficiency index 1. In this case for each Z there exists only one eigenfunction $f: T_1 f = Zf$ and for each ω there exists only one eigenfunction $g: T_0^*g = g$.

By Lemma 2.1 $T_1f = Zf$ implies $T_0^*f = \mu(Z)f$ and by Theorem 2.1 $\mu(Z)$ is analytic function of Z and $G(Z,\omega) = \omega - \mu(Z)$.

Because T_1^* is regular in the whole plane $\mu(Z)$ is an entire function. $\mu(Z)$ is simple because if $\mu(Z_1) = \mu(Z_2) = \mu$, there are two independent functions f_1 , f_2 : $T_1f_1 = Z_1f_1$; $T_0^*f_1 = \mu f_1$; $T_1f_2 = Z_2f_2$; $T_0^*f_2 = \mu f_2$. Hence T_0 would have the deficiency index 2 in μ .

An entire simple function is linear, therefore $\mu(Z) = \alpha Z + \beta$ and

$$P(Z,\omega) = \omega - \alpha Z - \beta$$
.

In the general case the characteristic function

$$G(Z,\omega) = \omega^{n} + \omega^{n-1}h_{1}(Z) + \cdots + h_{n}(Z)$$

is a polynomial in ω with coefficients that are entire functions in Z. Fix $\omega(\omega = \omega_0)$ and look at the zeros of the entire function in a single variable

$$\tilde{h}(Z) = \omega_0^n + \omega_0^{n-1} h_1(Z) + \dots + h_n(Z).$$

Any zero Z_0 of this function corresponds to an eigenfunction g satisfying $T_0^*g = \omega_0 g$; $T_1 g = Z_0 g$.

As the deficiency index of T_0 is finite only a *finite number* of Z (which cannot exceed the deficiency index) are zeros of $\tilde{h}(Z)$, because any zero corresponds to an eigenvalue of T_1 restricted to $H_{\omega_0}^*$.

Therefore Theorem 2.2 will be established by proving the following statement on functions of two complex variables.

THEOREM 2.3. If $G(z,\omega)$ is entire in z and polynomial in ω with leading coefficient 1 and has the property: for any ω_0 there are at most m zeros of $G(z,\omega_0)$, then $G(z,\omega)$ is polynomial in z and ω .

Proof(²). For any fixed ω $G(\omega, z) = P_{\omega}(z) \cdot e^{g_{\omega}(z)}$ where $P_{\omega}(z)$ is a polynomial in z and $g_{\omega}(z)$ is entire. Fix ω_i and obtain the system:

$$\omega_i^n + h_1(z)\omega_i^{n-1} + \cdots + h_n(z) = P_i(z) \cdot e^{g_i(z)}, \quad i = 1, \dots, n-1.$$

So by solving for $h_k(z)$ (with subscripts omitted):

$$h_k(z) = \sum_{i=1}^h \alpha_{ik} \cdot P_i(z) \cdot e^{g_i(z)} + \beta_k, \qquad \alpha_{ik}, \, \beta_k = \text{constants.}$$

Fix now another $\omega \neq \omega_i$; then:

$$\omega^n + \sum_{k=1}^n \omega^{n-k} \left(\sum_{i=1}^n \alpha_{ik} P_i(z) e^{g_i(z)} + \beta_k \right) = P_{\omega}(z) e^{g_{\omega}(z)}.$$

Group now terms with the same exponential:

(2.3)
$$Q_0(\omega) + \sum_{z} P_s(\omega, z) e^{g_s(z)} = P_{\omega}(z) \cdot e^{g_{\omega}(z)}.$$

 $Q_0(\omega)$ is a nonvanishing polynomial in ω because its leading coefficient is 1. $P_s(\omega,z)$ are polynomials in ω and z. This equality as a function in z implies $g_{\omega}(z) = 0$ for all ω that are not zeros of $Q_0(\omega)$. Furthermore $Q_0(\omega) = P_{\omega}(z)$ and $\sum_s P_s(\omega,z) e^{g_s(z)} = 0$.

The last equality implies that for any s either $P_s(\omega, z)$ or $g_s(z)$ are zero identically. In any case the left-hand side of (2.3) (which is $G(z,\omega)$) is polynomial in ω and z. Thus the proof of Theorem 2.3 as well as Theorem 2.2 is complete.

Theorem 2.3 does not tell the degree of $G(z,\omega)$ in ω but by using it again for the operator T_0^* (instead of T_1) the following theorem is obtained.

THEOREM 2.4. There exists a polynomial $Q(z,\omega)$ which has degree m (the deficiency index of T_0) at most in z and degree n at most in ω and has leading coefficients 1 in z and ω .

⁽²⁾ This elementary proof was given by M. Shinbrot.

Proof. By application of Theorem 2.2 to T_0^* there exists a polynomial $R(z,\omega)$:

$$R(z,\omega) = z^m + h_1(\omega)z^{m-1} + \cdots + h_m(\omega)$$

having the property that each zero (z_0, ω_0) corresponds to an eigenfunction f: $T_0^*f = \omega_0 f$, $T_1 f = z_0 f$, and vice versa. But the polynomial $G(z, \omega)$ has also that property, i.e., that any function f: $T_1 f = z_0 f$, $T_0^*f = \omega_0 f$ corresponds to a zero (z_0, ω_0) of $G(z, \omega)$. It follows that the zeros of $G(z, \omega)$ and $G(z, \omega)$ are the same (they may have different multiplicity). Define $G(z, \omega)$ as the greatest common divisor of $G(z, \omega)$ and $G(z, \omega)$, and factor $G(z, \omega)$ and $G(z, \omega)$ into prime factors:

$$G(z,\omega) = Q_1^{\alpha_1}(z,\omega) \cdot Q_2(z,\omega)^{\alpha_2} \cdots Q_n^{\alpha_n}(z,\omega),$$

$$R(z,\omega) = Q_1^{\beta_1}(z,\omega) \cdot Q_2(z,\omega)^{\beta_2} \cdots Q_n^{\beta_n}(z,\omega).$$

 α_i and β_i may be zero. $Q(z,\omega)$ is given by:

$$Q(z,\omega) = Q_1^{\min[\alpha_1,\beta_1]} \cdot Q_2^{\min[\alpha_2,\beta_2]} \cdots Q_n^{\min[\alpha_n,\beta_n]}.$$

As $G(z,\omega)$ and $R(z,\omega)$ have the same zeros it follows by Hilbert's nullstellensätz that $G(z,\omega)$ divides a power of $R(z,\omega)$ and vice versa. Therefore if for any $i \, \alpha_i > 0$ then $\beta_i > 0$ and $\min(\alpha_i,\beta_i) > 0$. Hence $Q(z,\omega)$ has the same zeros as $G(z,\omega)$ and $R(z,\omega)$. As $Q(z,\omega)$ divides $G(z,\omega)$ and the leading coefficient in ω of $G(z,\omega)$ is 1 it is clear that the leading coefficient in ω of $Q(z,\omega)$ is 1. The same argument holds for z; therefore $Q(z,\omega)$ is the desired polynomial.

Corollary 2.4. $Q(z,\omega)$ can be computed by knowing a finite number of pairs of eigenvalues pertaining to the common eigenfunctions of T_1 and T_0^* .

Because by Theorem 2.4, the degree of $Q(z,\omega)$ is bounded in z and ω . Hence its coefficients can be computed by knowing a finite number of zeros.

So far nothing was mentioned about existence of normal operators that are not derived from symmetric operators. The theory of symmetric operators and their extensions is quite complete and may be extended to polynomials in symmetric operators as well. Therefore it is necessary to furnish an example of a normal operator which is not a polynomial in a symmetric operator. The example will also show the structure of a normal operator which is regular in the whole plane; observe in particular the use of Theorem 2.3 as a guide for construction of the eigenvalues.

EXAMPLE. There exists a normal pair of operators (T_0, T_1^*) which are regular in the whole plane. Moreover, there exists an operator T, extension of T_0 , such that: $T \supset T_0$; $T^* \supset T_1^*$; and $R = T^{-1}$ is a bounded normal operator. T as well as R are not polynomials in any symmetric operator. This example is quite complicated. Because of reasons that will be explained in Chapter 3 the deficiency index of T_0 and T_1^* is 2 at least. It is more convenient to construct R and R^* first, then T and T^* , and finally T_0 and T_1^* .

Choose any orthogonal sequence $\{f_n\}$ in a separable Hilbert space H and define

(2.4)
$$Rf_{n} = \frac{1}{\lambda_{n}} f_{n}; \qquad R^{*}f_{n} = \frac{1}{\lambda_{n}} f_{n};$$

$$(\operatorname{Re} \lambda_{n})^{2} - (\operatorname{Im} \lambda_{n})^{2} = \frac{1}{2}; \qquad |\lambda_{n}| \to \infty.$$

Further conditions will be imposed later on the λ_n . By this definition R and R^* are bounded normal operators having well-defined inverses T, T^* respectively:

$$Tf_n = \lambda_n f_n$$
; $T^*f_n = \bar{\lambda}_n f_n$.

The function $g = \sum_{j=0}^{\infty} d_j f_j$ is in the domain of $T(T^*)$ if and only if $\sum_{j=0}^{\infty} \left| d_j \lambda_j \right|^2 < \infty$. $D_T = D_{T^*}$ is dense in H and $\Delta_T = \Delta_{T^*} = H$. T_0 and T_1^* will be defined by "taking out" two functions $\sum_{j=0}^{\infty} a_j f_j$ and $\sum_{j=0}^{\infty} b_j f_j$ from the range of T.

They are chosen to satisfy the following conditions:

(2.5)
$$\sum_{j=0}^{\infty} |a_j|^2 = \sum_{j=0}^{\infty} |b_j|^2 = 1; \qquad \sum_{j=0}^{\infty} a_j b_j = 0.$$

(2.6)
$$a_n \left(\frac{\lambda_n}{\overline{\lambda}_n} - \frac{1}{\overline{\lambda}_n} \right) + b_n = 0.$$

$$(2.7) -a_n + b_n \left(\frac{\lambda_n}{\overline{\lambda_n}} + \frac{1}{\overline{\lambda_n}}\right) = 0.$$

(2.8) Any linear combination of the series $\{\bar{\lambda}_n a_n\}$ and $\{\bar{\lambda}_n b_n\}$ is *not* square integrable. A necessary and sufficient condition for existence of solutions for (2.6) and (2.7) is:

(2.9)
$$\left(\frac{\lambda_n}{\overline{\lambda}_n} - \frac{1}{\overline{\lambda}_n}\right) \left(\frac{\lambda_n}{\overline{\lambda}_n} + \frac{1}{\overline{\lambda}_n}\right) + 1 = 0$$

which by evaluation reduces to (2.4).

Take for the series $\{b_i\}$ any series that satisfy:

(2.10)
$$\sum_{j=0}^{\infty} |b_j|^2 = 1; \ b_{4k} = b_{4k+1} = b_{4k+2} = b_{4k+3}; \ \sum_{j=0}^{\infty} |\lambda_j b_j|^2 = \infty$$

and define $a_n = b_n(\lambda_n/\bar{\lambda}_n + 1/\bar{\lambda}_n)$ and adjust (2.5) by choosing the λ_n :

(2.11)
$$\lambda_{2i+1} = \bar{\lambda}_{2i}; \quad 0 < \text{Re } \lambda_{4k} = -\text{Re } \lambda_{4k+2} + 1.$$

Thus

$$\sum_{j=0}^{\infty} a_j \bar{a}_j = \sum_{j=0}^{\infty} b_j \bar{b}_j \left(\frac{\lambda_j}{\bar{\lambda}_j} + \frac{1}{\bar{\lambda}_j} \right) \left(\frac{\bar{\lambda}_j}{\lambda_j} + \frac{1}{\bar{\lambda}_j} \right)$$

by evaluating and using (2.4)

$$= \sum_{j=0}^{\infty} b_j \bar{b}_j \frac{(2\operatorname{Re}\lambda_j + 1)^2}{(2\operatorname{Re}\lambda_j + 1)(2\operatorname{Re}\lambda_j - 1)}$$
$$= \sum_{j=0}^{\infty} b_j \bar{b}_j + \sum_{j=0}^{\infty} b_j \bar{b}_j \frac{2}{(2\operatorname{Re}\lambda_j - 1)} = 1 + 0$$

by (2.10),(2.11) and grouping indices 4k and 4k + 2. Similarly

$$\sum_{j=0}^{\infty} a_j \bar{b}_j = \sum_{j=0}^{\infty} b_j \bar{b}_j \left(\frac{\lambda_j}{\bar{\lambda}_j} + \frac{1}{\bar{\lambda}_j} \right)$$

$$= \sum_{j=0}^{\infty} b_j \bar{b}_j \cdot \frac{1}{2\operatorname{Re}\lambda_j - 1} + 1 \sum_{j=0}^{\infty} b_j \bar{b}_j \cdot \frac{2\operatorname{Im}\lambda_j}{2\operatorname{Re}\lambda_j + 1} = 0.$$

The second sum by grouping indices 2i and 2i + 1.

Property (2.8) is valid by direct calculation.

Define now $D_{T_0} = D_{T_1^*}$ to be the closure in the T topology of the sequence of functions:

(2.12)
$$\frac{f_n}{\lambda_n} - \bar{a}_n \sum_{j=0}^{\infty} \frac{a_j}{\lambda_j} f_j - \bar{b}_n \sum_{j=0}^{\infty} \frac{b_j}{\lambda_j} f_j, \qquad n = 0, 1, \dots.$$

 D_{T_0} is dense in H, because if $\sum_{j=0}^{\infty} c_j f_j$ is orthogonal to D_{T_0} then for every n:

$$\left(\sum_{j=0}^{\infty}c_{j}f_{j},f_{n}\cdot\frac{1}{\lambda_{n}}-\bar{a}_{n}\sum_{j=0}^{\infty}\frac{a_{j}}{\lambda_{j}}f_{j}-\bar{b}_{n}\sum_{j=0}^{\infty}\frac{b_{j}}{\lambda_{j}}f_{j}\right)=0.$$

So

$$c_n = \bar{\lambda}_n a_n \sum_{j=0}^{\infty} \frac{\bar{a}_j}{\bar{\lambda}_j} c_j + \bar{\lambda}_n b_n \sum_{j=0}^{\infty} \frac{\bar{b}_j}{\bar{\lambda}_j} c_j$$

which violates (2.9).

As for Δ_{T_0} : by (2.12) a function $\sum_{j=0}^{\infty} c_j f_j$ belongs to $\Delta_{T_0}^+$ if:

$$\left(\sum_{j=0}^{\infty} c_j f_j, f_n - \bar{a}_n \sum_{j=0}^{\infty} a_j f_j - \bar{b}_n \sum_{j=0}^{\infty} b_j f_j\right) = 0, \quad n = 0, 1, \dots.$$

Hence $c_n - a_n \sum_{j=0}^{\infty} c_j \bar{a}_j - b_n \sum_{j=0}^{\infty} c_j \bar{b}_j = 0$. So $\Delta_{T_i^*}^+$ (denoted also by H_0^*) is generated by the two functions $\sum_{j=0}^{\infty} a_j f_j$ and $\sum_{j=0}^{\infty} b_j f_j$. By the same calculation for T_1^* : $\Delta_{T_i^*}^+$ or H_0 is spanned by:

(2.13)
$$\sum_{j=0}^{\infty} \frac{\overline{\lambda}_j}{\lambda_j} a_j \cdot f_j \text{ and } \sum_{j=0}^{\infty} \frac{\overline{\lambda}_j}{\lambda_j} b_j \cdot f_j.$$

The crucial step in this construction is the following relation:

$$(2.14) T_1\left(\sum_{j=0}^{\infty}a_jf_j\right) - \sum_{j=0}^{\infty}a_jf_j = 0; T_1\left(\sum_{j=0}^{\infty}b_jf_j\right) + \sum_{j=0}^{\infty}b_jf_j = 0.$$

Verification of the first equality: for any n

$$\left((T_1 - I) \sum_{j=0}^{\infty} a_j f_j, \frac{f_n}{\lambda_n} - \bar{a}_n \sum_{j=0}^{\infty} \frac{a_j}{\lambda_j} \cdot f_j - \bar{b}_n \sum_{j=0}^{\infty} \frac{b_j}{\lambda_j} f_j \right) \\
= \left(\sum_{j=0}^{\infty} a_j f_j, \left(\frac{\bar{\lambda}_n}{\lambda_n} - \frac{1}{\lambda_n} \right) f_n - \bar{a}_n \sum_{j=0}^{\infty} \left(\frac{\bar{\lambda}_j}{\lambda_j} - \frac{1}{\lambda_j} \right) a_j \cdot f_j - \bar{b}_n \sum_{j=0}^{\infty} \left(\frac{\bar{\lambda}_j}{\lambda_j} - \frac{1}{\lambda_j} \right) b_j \cdot f_j \right) \\
= a_n \left[\left(\frac{\lambda_n}{\bar{\lambda}_n} - \frac{1}{\lambda_n} \right) - \sum_{j=0}^{\infty} a_j \bar{a}_j \left(\frac{\lambda_j}{\bar{\lambda}_j} - \frac{1}{\bar{\lambda}_j} \right) \right] - b_n \left[- \sum_{j=0}^{\infty} a_j \bar{b}_j \left(\frac{\lambda_j}{\bar{\lambda}_j} - \frac{1}{\bar{\lambda}_j} \right) \right] \right]$$

by (2.6) = $-b_n + a_n \sum_{j=0}^{\infty} \bar{a}_j b_j - b_n \sum_{j=0}^{\infty} b_j \bar{b}_j = 0$ by (2.5). The verification of the second part of (2.14) is exactly the same, except the use of (2.7) instead of (2.6).

After establishment of (2.14) the normality of T_0 is easily proved. $T_0T_1^*$ and $T_1^*T_0$ are restrictions of TT^* . So in order to prove $T_0T_1^* = T_1^*T_0$ it is sufficient to prove $\Delta_{T_0T_1^*} = \Delta_{T_1^*T_0}$ or $\Delta_{T_0T_1^*}^+ = \Delta_{T_1^*T_0^*}^+$ or to prove that the space \hat{H} of functions g that satisfy $T_1T_0^*g = 0$ coincides with \check{H} the space of functions h that satisfy $T_0^*T_1h = 0$. But it is easily seen that \hat{H} and \check{H} are spanned by:

(1)
$$\sum_{j=0}^{\infty} a_j f_j$$
, (2) $\sum_{j=0}^{\infty} b_j f_j$, (3) $\sum_{j=0}^{\infty} \frac{a_j}{\lambda_j} f_j$, (4) $\sum_{j=0}^{\infty} \frac{b_j}{\lambda_j} f_j$

(using (2.13), (2.14) and the fact that (3) and (4) are in $D_T = D_{T^*}$).

Property (c) in Definition 2.1 will be established by proving that $D_T = D_{T_0^*}$. As $\Delta_T = \Delta_{T_0^*} = H$ it follows that $D_{T_1} = D_T \oplus H_0$ and $D_{T_0^*} = D_{T_0^*} \oplus H_0^*$. But by (2.14) $H_0^* \subset D_{T_1}$ and $D_T = D_{T_0^*}$. So $D_{T_0^*} \subset D_{T_1}$. In a similar way $D_{T_1} \subset D_{T_0^*}$.

In order to prove property (b) in Definition 2.1, it is necessary to construct in detail $D_{T_1^*T_0}$. By arguments similar to (2.12) $D_{T_1^*T_0}$ is the closure in the T^*T norm of the sequence of functions:

$$(2.15) \frac{f_n}{\lambda_n \overline{\lambda}_n} - \bar{a}_n \sum_{j=0}^{\infty} \frac{a_j}{\lambda_j \overline{\lambda}_j} f_j - \bar{b}_n \sum_{j=0}^{\infty} \frac{b_j}{\lambda_j \overline{\lambda}_j} f_j - \frac{\bar{a}_n}{\overline{\lambda}_n} \sum_{j=0}^{\infty} \frac{a_j}{\lambda_j^2 \overline{\lambda}_j} f_j - \frac{\bar{b}_n}{\overline{\lambda}_n} \sum_{j=0}^{\infty} \frac{b_j}{\lambda_j^2 \overline{\lambda}_j} f_j.$$

Property (b) will be proved by showing that $\Delta_{T_0^*} = T\overline{D_{T_1^*T_0}}$. The functions $\sum_{j=0}^{\infty} c_j f_j$ that are orthogonal to $TD_{T_1^*T_0}$ satisfy:

$$\left(\sum_{j=0}^{\infty} c_j f_j \frac{f_n}{\bar{\lambda}_n} - \bar{a}_n \sum_{j=0}^{\infty} \frac{a_j}{\bar{\lambda}_j} f_j - \bar{b}_n \sum_{j=0}^{\infty} \frac{b_j}{\bar{\lambda}_j} f_j - \frac{\bar{a}_n}{\bar{\lambda}_n} \sum_{j=0}^{\infty} \frac{a_j}{\bar{\lambda}_j \bar{\lambda}_j} f_j - \frac{\bar{b}_n}{\bar{\lambda}_n} \sum_{j=0}^{\infty} \frac{b_j}{\bar{\lambda}_j \bar{\lambda}_j} f_j \right) = 0$$

or

$$c_n = \lambda_n a_n \sum_{j=0}^{\infty} \frac{\bar{a}_j c_j}{\lambda_j} + \lambda_n b_n \sum_{j=0}^{\infty} \frac{\bar{b}_j c_j}{\lambda_j} + a_n \sum_{j=0}^{\infty} \frac{\bar{a}_j c_j}{\lambda_j \bar{\lambda}_j} + b_n \sum_{j=0}^{\infty} \frac{\bar{b}_j c_j}{\lambda_j \bar{\lambda}_j}.$$

Therefore the sequence $\{c_n\}$ is a linear combination in $\{\lambda_n a_n\}$; $\{\lambda_n b_n\}$; $\{a_n\}$; $\{b_n\}$. By property (2.7) only the coefficients of the last two sequences are not zero. As $\sum_{j=0}^{\infty} a_j f_j$ and $\sum_{j=0}^{\infty} b_j f_j$ span $\Delta_{T_0}^+$ the proof is complete.

Now it is time to prove that T_0 is regular in the whole plane. $T\supset T_0$ and T is regular at all points but λ_n , $n=0,1,\cdots$. So it is sufficient to prove that T_0 is regular at any λ_n .

Suppose that for some n λ_n is in the spectrum of T_0 . In this case there exists $g \in D_{T_0}$, ||g|| = 1 such that $||(T - \lambda_n I)g|| < \varepsilon$. By the definition of D_{T_0} (2.12) g may be chosen to be of the form:

$$g = \sum_{k=0}^{\infty} c_k \left\{ \frac{b_k}{\lambda_k} - \bar{a}_k \sum_{j=0}^{\infty} \frac{a_j}{\lambda_j} f_j - \bar{b}_k \sum_{j=0}^{\infty} \frac{b_j}{\lambda_j} f_j \right\}$$
$$= \sum_{j=0}^{\infty} f_j \cdot \frac{1}{\lambda_j} \left(c_j - a_j \sum_{k=0}^{\infty} c_k \bar{a}_k - b_j \sum_{k=0}^{\infty} c_k \bar{b}_k \right)$$

(g may be chosen so that only a finite number of the c_k are different from zero). Denote $A = \sum_{k=0}^{\infty} c_k \bar{c}_k$; $B = \sum_{k=0}^{\infty} c_k \bar{b}_k$; $d_i = c_i - a_i A - b_i B$.

$$\varepsilon^{2} \ge \left\| (T - \lambda_{n} I) g \right\|^{2} = \sum_{j=0}^{\infty} \left| \frac{\lambda_{j} - \lambda_{n}}{\lambda_{j}} \right|^{2} \left| d_{j} \right|^{2} \ge \min_{j \ne n} \left| \frac{\lambda_{j} - \lambda_{n}}{\lambda_{j}} \right|^{2} \sum_{j \ne n} \left| d_{j} \right|^{2}.$$

$$\varepsilon^{2} \ge \sum_{j=0}^{\infty} \left| \frac{\lambda_{j} - \lambda_{n}}{\lambda_{j}} \right|^{2} \left| d_{j} \right|^{2} \ge \min_{j \ne n} \left| \lambda_{j} - \lambda_{n} \right|^{2} \sum_{j \ne n} \left| \frac{d_{j}}{\lambda_{j}} \right|^{2}$$

$$= \min_{j \ne n} \left| \lambda_{j} - \lambda_{n} \right|^{2} \left(1 - \left| \frac{d_{n}}{\lambda_{n}} \right|^{2} \right).$$

Therefore

$$|d_n|^2 \ge |\lambda_n|^2 \left(1 - \frac{\varepsilon^2}{\min|\lambda_j - \lambda_n|^2}\right)$$

or:

$$(2.16) \frac{|d_n|^2}{\sum_{\substack{j \neq n}} |d_j|^2} \ge |\lambda_n|^2 \cdot \left(1 - \frac{\varepsilon^2}{\min_{\substack{j \neq n}} |\lambda_j - \lambda_n|^2}\right) \cdot \min_{\substack{j \neq n}} \left|\frac{\lambda_j - \lambda_n}{\lambda_j}\right|^2 \cdot \frac{1}{\varepsilon^2} \ge C \cdot \frac{1}{\varepsilon^2}.$$

On the other hand by plugging back c_j into A and B and using (2.5):

$$d_j = c_j - a_j A - b_j B - a_j \sum_{k=0}^{\infty} d_k \bar{a}_k - b_j \sum_{k=0}^{\infty} d_k \bar{b}_k.$$

So $a_j \sum_{k=0}^{\infty} d_k \bar{a}_k + b_j \sum_{k=0}^{\infty} d_k \bar{b}_k = 0$. This equality is true for every j only if $\sum_{k=0}^{\infty} d_k \bar{a}_k = 0$. So

$$|d_n \bar{a}_n|^2 = |\sum_{k \neq n} d_k \bar{a}_k|^2 \le \sum_{k \neq n} |d_k|^2 \cdot \sum_{k \neq n} |a_k|^2$$

or

$$\frac{\left|\frac{|d_n|^2}{\sum_{k\neq n} |d_k|^2} \le \left|\frac{1}{a_n}\right|^2\right|$$

which contradicts (2.16).

So T_0 is regular in the whole plane, and the same proof holds for T_1^* as well. It remains to show that T is not a polynomial in a symmetric operator. If $T = \sum_{k=0}^{m} a_k S^k$ it follows that the eigenvalues λ_n of T may be written as

$$\lambda_n = \sum_{k=0}^m a_k S_n^k; S_n \text{ real.}$$

Hence:

$$\operatorname{Re} \lambda_n = \sum_{k=0}^m \operatorname{Re} a_k \cdot S_n^k$$
 and $\operatorname{Im} \lambda_n = \sum_{k=0}^m \operatorname{Im} a_k \cdot S_n^k$.

The λ_n satisfy (2.4):

$$\left(\sum_{k=0}^m \operatorname{Re} a_k S_n^k\right)^2 - \left(\sum_{k=0}^\infty I_m a_k \cdot S_n^k\right)^2 = \frac{1}{2}.$$

As this relation is true for infinitely many S_n the following polynomial relation in a real variable x is true:

$$\left(\sum_{k=0}^{m} \operatorname{Re} a_{k} \cdot x^{k}\right)^{2} - \sum_{k=0}^{\infty} \left(\operatorname{Im} a_{k} \cdot x^{k}\right)^{2} = \frac{1}{2}.$$

But this is true only if $\operatorname{Re} a_k = \operatorname{Im} a_k = 0$ for $k \ge 1$. Therefore T is a multiple of the identity, a contradiction.

CHAPTER 3. EXTENSIONS OF NORMAL OPERATORS

Some conditions for the existence of normal extensions will be given in the first half of this chapter. The problem of necessary and sufficient conditions seems to be not an easy one, because normal operators are less restrictive than symmetric ones. Most of theorems in this direction will be for the case where T_0 and T_1^* are regular in the whole plane.

The second half will deal with properties of the spectrum of normal extensions. In particular the distribution of the eigenvalues of complete normal extensions will be investigated.

DEFINITION 3.1. \tilde{T} an extension of T_0 is a normal extension if \tilde{T} is normal.

DEFINITION 3.2. \tilde{T} a normal extension of T_0 is a complete normal extension regular in the neighborhood of zero if $\Delta_{\tilde{T}} = H$ and $\tilde{T}^{-1} = R$ is a bounded normal operator

It is easy to produce examples of extensions (in the sense of Chapter 1) of normal operators which are not normal. Any nonsymmetric extension of a symmetric operator is of this type.

As for normal extensions and, especially, complete normal extensions, the following theorems will be based on the reasoning below (in the case where T_0 and T_1^* are regular in the whole plane): It is known by a theorem of G. C. Rota [4] that the spectrum of a regular extension (not necessarily normal) is composed of a denumerable number of isolated points. By virtue of Definition 3.2, if λ is a

point in the spectrum of T then there exists a function f such that $Tf = \lambda f$, $T^*f = \overline{\lambda} f$. But $T \subset T_1$ and $T^* \subset T_0^*$; therefore $T_1 f = \lambda f$; $T_0^* f = \overline{\lambda} f$. Theorem 2.3 may be utilized now to get:

THEOREM 3.1. (T_0, T_1^*) form a normal pair of operators regular in the whole plane and having a finite deficiency index.

A necessary condition for existence of complete normal extensions is existence of solutions to the equation: $Q(\lambda, \lambda) = 0$.

THEOREM 3.2. Subject to the conditions of Theorem 3.1, all the eigenvalues of a complete normal extension are on the manifold of real zeros of the polynomial in μ and ν : $Q(\mu + i\nu, \mu - i\nu) = 0$.

In a very special case the following necessary and sufficient condition is obtained:

Theorem 3.3. If in addition to the conditions of Theorem 3.1 T_0 and T_1^* have the deficiency index 1 then a necessary and sufficient condition for existence of complete normal extensions of T_0 is: There exists a symmetric operator S_0 such that $T_0 = \gamma S_0 + \delta I$.

Proof. If $T_0 = \gamma S_0 + \delta I$ and T_0 is regular in the whole plane, then S_0 is also regular in the whole plane; therefore S_0 has a self-adjoint extension S. Define now $T = \gamma S + \delta I$ to get the desired extension of T_0 .

Suppose now that there exists a complete normal extension T of T_0 . In this case there exists a sequence of eigenfunctions $\{f_n\}$ such that:

$$Tf_n = \lambda_n f_n$$
; $T^*f_n = \bar{\lambda} f_n$.

As $T_1 \supset T$ and $T_0^* \supset T^*$ it follows from Theorem 2.4 that

$$\bar{\lambda}_n = \alpha \lambda_n + \beta$$
.

Denote $\lambda_n = \mu_n + i\nu_n$ and separate to real and imaginary parts to obtain

(3.1)
$$(\operatorname{Re}\alpha - 1)\mu_n - \operatorname{Im}\alpha \cdot \nu_n + \operatorname{Re}\beta = 0,$$

$$\operatorname{Im}\alpha \cdot \mu_n + (\operatorname{Re}\alpha + 1)\nu_n + \operatorname{Im}\beta = 0.$$

Define S by:

$$S = \frac{T - (\mu_0 + i\nu_0)I}{\operatorname{Im}\alpha + i(\operatorname{Re}\alpha - 1)}.$$

S is symmetric because $Sf_n = t_n f_n$ and t_n is real. Because by a direct computation:

$$Sf_n = \frac{\mu_n + i\nu_n - (\mu_0 + i\nu_0)}{\operatorname{Im}\alpha + i(\operatorname{Re}\alpha - 1)} f_n = t_n f_n$$

and using (3.1) it follows that $\text{Im } t_n = 0$.

REMARK. This theorem explains the choice of deficiency index 2 in the example in Chapter 2.

The difference between normal and symmetric operators is emphasized by the following theorems.

THEOREM 3.4. T_0 is a normal operator regular in the whole plane and having a finite deficiency index n. A necessary condition for existence of complete normal extension is: There exist n independent eigenfunctions f_j independent (mod Δ_{T_0}) such that:

$$T_1 f_i = \lambda_i f_i$$
; $T_0^* f_i = \bar{\lambda}_i f_i$; $(f_i, f_i) = \delta_{ii}$.

Proof. If T_0 has complete normal extension T then there exists an orthonormal sequence of eigenfunctions $\{f_i\}$ such that $T_1f_i=\lambda_if_i$; $T_0^*f_i=\bar{\lambda}_if_i$. As $\Delta_T=H$ it follows that n eigenfunctions may be picked out of the f_i which together with Δ_{T_0} span H.

In the symmetric case

THEOREM 3.5. If T_0 is symmetric then $T_0 - \lambda I$ (Im $\lambda \neq 0$) is normal. Any self-adjoint extension of T_0 induces a complete normal extension of $T - \lambda I$.

If T_0 is regular in the whole plane then the conditions in Theorem 3.4 are sufficient and any complete normal extension is self-adjoint.

Proof. The first part is obvious. As for the second part: In the symmetric case $T_0 = T_1^*$ and $T_1 = T_0^*$. Therefore any common eigenvalue z such that $T_1 f = zf$; $T_0^* f = \bar{z} f$ is real, hence the extension is self-adjoint.

For later application the following is needed.

THEOREM 3.6. T_0 is symmetric regular operator. M is defined to be the manifold of all f orthogonal to Δ_{T_0} (M $\perp \Delta_{T_0}$). T is an extension defined by:

$$D_T = D_{T_0} \oplus \{f_{\sigma}\}; \quad Tf = 0, \quad f \in M$$

Conclusion: T is self-adjoint.

Proof. T is symmetric because if $h_1, h_2 \in D_{T_0}$ and $f_1, f_2, \in \Delta_{T_0}$ then:

$$(T[h_1 + f_1], h_2 + f_2) = (Th_1, h_2) = (h_1, Th_2) = (h_1 + f_1, T[h_2 + f_2]).$$

T is self-adjoint: Any g such that $T^*g = 0$ satisfies: $0 = (T^*g, h) = (g, Th)$ or $g \perp \Delta_{T_0}$ hence $g \in D_T$. Moreover $\Delta_{T^*} = \Delta_{T_0}$ because for any $f \perp \Delta_{T_0}$: $(T^*g, f) = (g, Tf) = 0$. So any $g \in D_{T^*}$ may be decomposed into $g_1 + g_2 : g_1 \perp \Delta_{T_0}$, $g_2 \in D_{T_0}$. Thus the proof of the theorem is complete.

Passing now to properties of complete normal extensions the following theorems will deal mainly with local as well as asymptotic distribution of the eigenvalues. These theorems are a direct consequence of normality and are not valid for general operators.

THEOREM 3.7. T_0 is a normal operator regular in λ satisfying: $||T_0f - \mu f|| \ge c||f||$ for $|\mu - \lambda| < d$ and having deficiency index n. T is a complete normal extension regular at λ (some point in a neighborhood of λ). $\psi_1, \dots, \psi_{n+1}$ are n+1 linearly independent functions which satisfy $T\psi_i = \mu_i \psi_i$.

Subject to these conditions: $\max_i |\mu_i - \lambda| \ge \min\{d, c\}$.

Proof. The theorem is interesting only in the case where all the μ_i satisfy $|\mu_i - \lambda| < d$. Without loss of generality λ may be set to be zero and ψ_i to be orthnormal. As the deficiency index is n there exists a linear combination $\sum_{i=1}^{n+1} a_i \psi_i = f$ such that $f \in \Delta_{T_0}$. If for some i: $T\psi = 0$: then $a_i = 0$ as well, because as T is normal $T\psi_i = 0$ implies $T^*\psi_i = 0$ or $T_0^*\psi_i = 0$ so $\psi_i \perp \Delta_{T_0}$.

Hence as T^{-1} is a well-defined operator from Δ_{T_0} to H:

$$||T^{-1}f||^2 = ||\sum_s a_s T^{-1} \psi_s||^2 = \sum_s \left| \frac{a_s}{\mu_s} \right|^2 \ge \min_s \frac{1}{|\mu_s|^2} \cdot \sum_s |a_s|^2$$

$$= \min_s \frac{1}{|\mu_s|^2} ||f||^2.$$

On the other hand as $f \in \Delta_{T_0}$: $||f||^2 \ge c^2 ||T^{-1}f||^2$. Hence

$$\frac{\|f\|^2}{c^2} \ge \|T^{-1}f\|^2 \ge \min_{s} \frac{1}{|\mu_s|^2} \|f\|^2$$

or $\max_i |\mu_i| \geq c$.

In certain special cases (conditions of Theorem 3.6, for example), a better estimate holds.

THEOREM 3.8. T_0 is a normal operator regular in λ satisfying: $||T_0f - \mu f|| \ge c ||f||$ for $|v - \lambda| < d$ (having any deficiency index); T is a complete normal extension which is constructed by adjoining all the eigenfunctions of T_0 which have eigenvalue λ ; ϕ is any eigenfunction of T such that $T\phi = \mu\phi$, $\mu \ne \lambda_0$.

Subject to these conditions $|\mu - \lambda| \ge \min\{d, c\sqrt{2}\}.$

Proof. The construction above does not necessarily lead to a complete normal extension. In the case it does, assuming $\lambda = 0$, ϕ is orthogonal to any ϕ_{α} satisfying $T\phi_{\alpha} = 0$ or, by the theorem's conditions it is orthogonal to any $\psi: T_0^*\psi = 0$. Hence

$$\phi = T_0 f$$
 and $\phi - \mu f = T_0 f - \mu f$.

Separate f into components f_1 in the direction of ϕ , f_2 orthogonal to ϕ . As T is complete normal extension ϕ is an eigenfunction of T satisfying $T^*\phi = \bar{\mu}\phi$ or ϕ orthogonal to $\Delta_{T_0} = \mu I$. Therefore

$$T_0 f - \mu f = -\mu f_2$$
; $T_0 f = \phi = \mu f_1$.

But

$$c^{2} ||f||^{2} \le ||T_{0}f||^{2} = |\mu|^{2} ||f_{1}||^{2},$$

$$c^{2} ||f||^{2} \le ||T_{0}f - \mu f||^{2} = |\mu|^{2} ||f_{2}||^{2}.$$

So by addition $2c^2 \|f\|^2 \le |\mu|^2 \{ \|f_1\|^2 + \|f_2\|^2 \} = |\mu|^2 \|f\|^2$ which is the desired result.

THEOREM 3.9. T_0 is a normal operator regular in the whole plane and having a finite deficiency index. T is any complete normal extension of T_0 .

Subject to these conditions there is only a finite number of directions $\alpha_1, \dots, \alpha_m$ having the property: For any ε there exists an n such that all the eigenvalues λ_i $(i \ge n)$ of T are located in the angles bounded by $\alpha_i - \varepsilon$; $\alpha_i + \varepsilon$.

Proof. By Theorem 3.7 there is only a finite number of eigenvalues (counting multiplicity) in any bounded portion of the plane. Therefore it is sufficient to investigate the asymptotic properties of the zero-manifold of the polynomial Q(x,y) (Theorem 3.2). So by proving the following lemma, the theorem will be established.

LEMMA 3.1. Any unbounded analytic curve which is included in the manifold of real zeros of a polynomial in two variables Q(x,y) has an asymptotic direction α , i.e., for any ε there exists an R having the property: The direction of the tangent at $(x,y), x^2 + y^2 \ge R^2$, differs from α by ε at most.

Proof. It is well known that the manifold of the real zeros is composed of a finite number of points and analytic curves having a finite number of singular points. Choose R_0 so that the only singular point outside a circle with radius R_0 about the origin is infinity. Any analytic curve outside this circle is unbounded. Take one of these curves and denote it by y(x). Denote z = x + iy and introduce new variables by inversion $1/z = \zeta = \xi + i\eta$. By this inversion the real zeros of Q(x,y) correspond to the real zeros of a polynomial $P(\xi,\eta)$. In particular y(x) corresponds to an analytic curve $\eta(\xi)$ regular inside a circle of radius $1/R_0$ which has a singularity at zero (at most). Any tangent to y(x) will correspond to a tangent circle to $\eta(\xi)$ passing through the origin.

Denote by $S(\xi)$ the tangent circle at $(\xi, \eta(\xi))$. By conformity it is sufficient to prove that there exists a limit to the angle between the ξ axis and the tangent to the circle at the origin.

Denote by $(\xi, \hat{\eta})$ the center of $S(\xi)$, then:

$$(\xi - \hat{\xi})^2 + (\eta - \hat{\eta})^2 = \hat{\xi}^2 + \hat{\eta}^2 \qquad -\frac{\xi - \hat{\xi}}{\eta - \hat{\eta}} = \eta'(\xi).$$

By these two equations $\hat{\xi}$ and $\hat{\eta}$ are algebraic in ξ , $\eta(\xi)$ and $\eta'(\xi)$. As $\eta(\xi)$ and $\eta'(\xi)$

can be developed by Puissex series (fractional power series) and $\eta(\xi)$ is developed only by positive powers ($\eta = 0$ when $\xi = 0$) the functions $\hat{\xi}(\xi)$, $\hat{\eta}(\xi)$ can be developed to the series:

$$\hat{\xi}(\xi) = \xi^{\alpha} \sum_{i=0}^{\infty} a_i \xi^{i/k}, \qquad a_0 \neq 0 \text{ and } k \text{ integer,}$$

$$\hat{\eta}(\xi) = \xi^{\beta} \sum_{i=0}^{\infty} b_i \xi^{i/l}, \qquad b_0 \neq 0 \text{ and } l \text{ integer.}$$

Therefore $\hat{\xi}(\xi)/\hat{\eta}(\xi)$ is close to $(a_0/b_0)\xi^{\alpha-\beta}$ as $\xi \to 0$. But $\hat{\xi}(\xi)/\hat{\eta}(\xi)$ is the angle between the circle and the ξ axis, therefore the limit exists (which may be infinite) and the lemma is proved.

From these theorems one can draw conclusions about the operator T^{-1} and to investigate its type, i.e., if it is compact or of Hilbert-Schmidt type, etc.

Definition 3.3. λ will be called an essential eigenvalue if there exists a function ψ (essential eigenfunction) such that $\psi \in D_{T_0}$ and $T_0\psi = \lambda \psi$.

THEOREM 3.10. T is a complete normal extension of T_0 regular at 0. A necessary condition for T^{-1} to be compact is:

- (a) There is only finite number of eigenvalues λ_i (counting multiplicity): $\alpha \leq \lambda_i \leq \beta$ for any α and β .
- (b) \hat{T}_0 , the operator T_0 restricted to the orthogonal complement of the essential eigenfunctions, is regular in the whole plane.

Proof. (a) is self evident. As for (b) suppose that there exists a point μ such that $\hat{T}_0 - \mu I$ is not regular. In this case there are three possibilities:

- (i) μ is in the continuous spectrum of T.
- (ii) μ is an eigenvalue having infinite multiplicity.
- (iii) μ is an eigenvalue having finite multiplicity.

As the first two possibilities contradict the compactness of T^{-1} , it remains to consider only the third one.

 $T_0 - \mu I$ is not regular; therefore there exists a sequence $\{f_n\} \in D_{\widehat{T}_0} \|f_n\| = 1$ such that $\|\widehat{T}_0 f_n - \mu f_n\| \le \varepsilon_n$, $\varepsilon_n \to 0$. As μ is an isolated point in the spectrum of T any f_n can be decomposed to orthogonal components:

$$f_n = f_{n,1} + f_{n,2}; Tf_{n,1} = \mu f_{n,1}; \|Tf_{n,2} - \mu f_{n,2}\| \ge \alpha \|f_{n,2}\|.$$

Therefore

$$\varepsilon_{n} = \varepsilon_{n} \| f_{n} \| \ge \| \hat{T}_{0} f_{n} - \mu f_{n} \| = \| T f_{n,1} - \mu f_{n,1} + T f_{n,2} - \mu f_{n,2} \|$$

$$= \| T f_{n,2} - \mu f_{n,2} \| \ge \alpha \| f_{n,2} \|.$$

So

$$f_{n,2} \to 0$$
 as $n \to \infty$.

The functions $f_{n,1}$ are bounded by 1 and as they are in a finite subspace, a strongly convergent subsequence may be chosen out of them. For sake of simplicity keep the same index. As $f_n = f_{n,1} + f_{n,2}$ is convergent to f and $\hat{T}_0 f_n = T f_{n,1} + T f_{n,2}$ converges to μf , $D_{\hat{T}_0}$ contains an essential eigenvalue, contrary to the assumptions.

As for sufficient condition the following holds.

THEOREM 3.11. Subject to the conditions of Theorem 3.10 a sufficient condition for T^{-1} to be compact is: \hat{T}_0 is regular and has a finite deficiency index in the whole plane.

Proof. In this case the spectrum is composed of denumerable number of eigenvalues. Moreover Theorem 3.9 assures that the multiplicity of any eigenvalue is finite (does not exceed the deficiency index).

In case of infinite deficiency index there are examples of compact as well as noncompact inverses of a complete normal extension.

In some special cases where T_0 is regular in the whole plane the lower bound of $T_0 - \lambda I$ is known (the greatest $C(\lambda)$ satisfying $||T_0 f - \lambda f|| \ge C(\lambda) f$). For example, the Hörmander inequality [2] leads to the estimate $||Tf - \lambda f|| \ge C||f||$, independent of λ . In these cases the combination of Theorem 3.9 and Lemma 3.1 leads to estimates of the distribution of the eigenvalues.

DEFINITION 3.4. S a bounded operator in Hilbert space is of abstract Hilbert-Schmidt type if it has the property:

$$|||S||| - \sum_{\alpha \in J} ||S\phi_{\alpha}||^2 < \infty$$

where $\{\phi_{\alpha}\}_{\alpha\in J}$ is a complete orthonormal system.

|||S||| is called the double norm of S and is independent of ϕ_{α} . In case of Hilbert space of functions this definition coincides with the known one:

$$Sf(t) = \int K(s,t)f(t) dt = g(s); \qquad \int \int |K(s,t)|^2 ds dt < \infty$$

(K is not necessarily symmetric). A Hilbert-Schmidt operator is always compact and satisfies: $\sum |\lambda_n|^2 < \infty$ where $\{\lambda_n\}$ is the sequence of eigenvalues (counting multiplicity).

A wider class is that of operators satisfying $\sum_{i} |\lambda_{i}|^{i} < \infty$. Any of these operators has the property that a certain power of it (the [l/2]) is of Hilbert-Schmidt type.

THEOREM 3.12. T_0 is a normal operator regular in the whole plane having a finite deficiency index, and satisfying:

$$||T_0f - \lambda f|| \ge C(\lambda) ||f|| \text{ for } f \in D_{T_0}.$$

T is a complete normal extension regular at zero.

Define:

$$M(R) = \min_{|\lambda| = R} C(\lambda).$$

Conclusion: If $M(R) > R^{-k+\epsilon}$ for R sufficiently large then T^{-1} is a compact operator having the property $\sum |\mu_i|^{1+k} < \infty$; μ_i are the eigenvalues of T^{-1} , counting multiplicity.

COROLLARY 3.12. If k = 1 then T^{-1} is of abstract Hilbert-Schmidt type.

The proof of the theorem will be via the following lemmas.

LEMMA 3.2. M(R) is a positive continuous function of a real variable which satisfies $M(R) > R^{-k+\epsilon}$ for R sufficiently large. $\{\eta_i\}$ is an increasing sequence of positive numbers satisfying: $\eta_{i+1} - \eta_i \ge M(\eta_i)$. Conclusion: $\sum_{i=1}^{\infty} (1/\eta_i)^i < \infty$ where $i = \max\{2, k+1\}$.

Proof. If k < 1 it may be replaced by 1 in the lemma's condition so l may be replaced by k + 1; $\{\eta_i\}$ is an isolated sequence, so it is sufficient to prove the convergence by summing from some $\eta_m > 1$. For sake of simplicity take $\eta_1 > 1$.

It is sufficient to prove $\eta_i^{k+1} \ge (i-1)^{1+\delta}$ where δ is some positive number to be fixed. The proof will be by induction. Distinguish between two cases.

(a)
$$\eta_i^{k+1} \ge i^{1+\delta}$$
, (b) $\eta_i^{k+1} < i^{1+\delta}$.

In case (a) as $\eta_{i+1} > \eta_i$ it follows that $\eta_{i+1}^{k+1} \ge i^{1+\delta}$ which is the induction hypothesis. In case (b) it is sufficient to show: $(i+1)^{1+\delta} - \eta_{i+1}^{k+1} \le i^{1+\delta} - \eta_i^{k+1}$. Because as $(i+1)^{1+\delta} - i^{1+\delta} > i^{1+\delta} - (i-1)^{1+\delta}$ it follows that

$$i^{1+\delta} - \eta_{i+1}^{k+1} \le (i-1)^{1+\delta} - \eta_{i}^{k+1} \le 0.$$

The inequality above reduces to:

$$(i+1)^{(1+\delta)/(1+k)} - \eta_{i+1} \le i^{(1+\delta)/(1+k)} - \eta_i$$

or

$$\eta_{i+1} - \eta_i \ge (i+1)^{(1+\delta)/(1+k)} - i^{(1+\delta)/(1+k)}.$$

$$\eta_i + M(\eta_i) - \eta_i \ge (i+1)^{(1+\delta)/(1+k)} - i^{(1+\delta)/(1+k)}.$$

or

$$\eta_i^{-k+\varepsilon} \ge i^{(1+\delta)/(1+k)} \quad \left[\left(1 + \frac{1}{i} \right)^{(1+\delta)/(1+k)} - 1 \right].$$

So applying the mean value theorem it reduces to:

$$\eta_i^{-k+\varepsilon} \ge i^{(1+\delta)/(1+k)} \cdot \frac{1+\delta}{1+k} \cdot \frac{1}{i} \cdot \left(1 + \frac{\theta}{i}\right)^{(1+\delta)/(1+k)-1} \qquad (0 \le \theta \le 1).$$

Or by the induction hypotheses:

$$(i^{(1+\delta)/(1+k)})^{-k+\epsilon} \ge i^{(1+\delta)/(1+k)} \cdot \frac{1+\delta}{1+k} \cdot \frac{1}{i} \cdot \left(1 + \frac{\theta}{i}\right)^{(1+\delta)/(1+k)-1}.$$

As for small δ :

$$\frac{1+\delta}{1+\mathbf{i}k}\cdot\left(1+\frac{\theta}{\mathbf{i}}\right)^{(1+\delta)/(1+k)-1}\leq 1.$$

And for $\delta \le \varepsilon/(1+k-\varepsilon)$

$$\frac{1+\delta}{1+k}(-k+\varepsilon) \ge \frac{1+\delta}{1+k}-1,$$

the last inequality is valid which completes the proof.

LEMMA 3.3. y(x) is an unbounded curve having the property: For any ε there exists a constant R_0 such that the direction of the tangent to y(x): $y^2 + x^2 \ge R_0^2$ differs from a fixed direction α by ε at most. Then there exists a cons ant R having the property: The distance between any two points on the curve: $(x_1, y(x_1))$; $(x_2, y(x_2))$: $y_i^2 + x_i^2 \ge R^2$ is comparable with the difference of their distance from the origin, i.e.:

$$\left| \frac{(x_2 - x_1)^2 + [y(x_2) - y(x_1)]^2}{x_2^2 + y(x_2)^2 - (x_1^2 + y(x_1)^2)^2} \right| \ge \frac{1}{2}.$$

Proof. By direct verification.

Proof of Theorem 3.12. It is known from Theorem 3.9 that there is only a finite number of eigenvalues in any bounded set in the plane, so it is sufficient to consider the sum of eigenvalues outside a large disc. All the eigenvalues are on the real-zeros manifold of a polynomial in two variables. Consider the disc that outside it this manifold satisfies the conclusions of Lemma 3.1. This manifold contains m analytic curves; each of them satisfies the conditions of Lemma 3.3. Therefore there exists a constant R satisfying the conclusions of this lemma for every curve.

Denote by n the deficiency index of T_0 and order the eigenvalues λ_i according to their absolute value (counting multiplicity). Consider now any block of eigenvalues having mn + 1 terms, i.e., the sequence λ_i for $l \le i < l + mn + 1$. There exists at least one curve which contains n + 1 eigenvalues, and by Theorem 3.9, there exist at least two out of these eigenvalues satisfying:

$$\left|\lambda_{i_2}-\lambda_{i_1}\right| \geq M(\left|\lambda_{i_1}\right|),$$

hence by Lemma 3.3:

$$\left|\lambda_{i_2}\right| - \left|\lambda_{i_1}\right| \ge \frac{M(\left|\lambda_{i_1}\right|)}{2}$$

and by monotonicity:

$$\left|\lambda_{l+mn+1}\right| - \left|\lambda_{k}\right| \ge \frac{M(\left|\lambda_{l_{1}}\right|)}{2} \ge \left|\lambda_{l_{1}}\right|^{-k+\varepsilon} \ge \left|\lambda_{l}\right|^{-k+\varepsilon}.$$

Separate now the sequence $\{|\lambda_i|\}$ to mn sequences

$$\{|\lambda_{s+tmn}|\}, \quad s=1,\dots,mn; \quad t=1,\dots,\infty.$$

Any of these sequences satisfies the conditions of Lemma 3.2, therefore satisfies its conclusions and by grouping these sequences the theorem is proved as well.

REFERENCES

- 1. P. D. Lax, On Cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations, Comm. Pure Appl. Math. 8 (1955), 615-633.
- 2. L. Hörmander, On the theory of general partial differential operators, Acta Math. 94 (1955), 161-248.
- 3. N. I. Achiezer and I. M. Glasman, Theorie der linearen Operatoren im Hilbert-Raum, Akademie-Verlag, Berlin, 1954.
- 4. G. C. Rota, Extension theory of differential operators. I, Comm. Pure Appl. Math. 11 (1958), 23-65.
- 5. I. C. Gohberg and M. G. Krein, Systems of integral equations on a half line with kernels depending on the difference of arguments, Amer. Math. Soc. Transl. (2) 14 (1960), 217-287.
 - 6. F. Riesz and B. Sz. Nagy, Functional analysis, Ungar, New York, 1955.

THE HEBREW UNIVERSITY,
JERUSALEM, ISRAEL
THE UNIVERSITY OF CHICAGO,
CHICAGO, ILLINOIS